
j. differential geometry

60 (2002) 345-354

COHOMOLOGY THEORY IN BIRATIONAL
GEOMETRY

CHIN-LUNG WANG

Abstract
This is a continuation of [9], where it was shown that K-equivalent complex
projective manifolds have the same Betti numbers by using the theory of
p-adic integrals and Deligne’s solution to the Weil conjecture. The aim of
this note is to show that with a little more book-keeping work, namely by
applying Faltings’ p-adic Hodge Theory, our p-adic method also leads to the
equivalence of Hodge numbers — a result which was previously known via
motivic integration.

1. Introduction

Mori’s minimal model theory has proven to be important in various
geometric problems and is also important in our philosophical view point
of birational geometry. In order to understand the relation between
birational but not isomorphic minimal models in dimensions bigger than
two, the notion of K-equivalence was developed to serve as a formal
analogue, but with the advantage of independence from the existence
problem of minimal models. This applies to the most interesting case
of birational Calabi-Yau manifolds which was studied extensively in the
last decade.

In dimension three, any birational map between minimal models can
be decomposed as a composite of flops [7]. This gives very precise in-
formation needed in analyzing birational minimal threefolds. However,
the only known proof of this result relies on detailed classification of
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terminal singularities, hence is out of reach in higher dimensions. Be-
cause of this, new dimension-free approaches are needed for the study
of K-equivalent manifolds.

In [9], an integration formalism was formulated to compare numer-
ical invariants of K-equivalent manifolds. In particular, the p-adic in-
tegral has been used to prove the equivalence of Betti numbers and the
motivic integral was used to prove the equivalence of Hodge numbers
(cf. [9], §5.5, [4], [1], [2]). More recently, by formally viewing the inter-
section theory as an integration theory, the author has shown that the
complex elliptic genera are the most general Chern numbers invariant
under K-equivalence [10].

The aim of this note is to present a proof of the equivalence of
Hodge numbers along the original line using p-adic integral and the Weil
conjecture. This was announced with a sketched proof in [11]. The new
input needed here is the so-called p-adic Hodge Theory developed by
Fontaine and Messing [6] and completed by Faltings [5]. It turns out
that one may apply the existing theorems quite straightforwardly except
a few minor technicalities. One is related to the Cěbotarev density
theorem that the zeta functions determine only the semisimplifications
of the p-adic étale cohomology as Galois representation. The other is
the reduction procedure from finitely generated fields over Q to number
fields. Fortunately, these problems can all be handled by quite standard
tricks and the proof goes through.

The author is grateful to C.-L. Chai and J.-K. Yu for useful discus-
sions on p-adic Hodge Theory. Thanks are also to I.-H. Tsai for his
criticism on the proof of [9], Theorem 1.4 and to J.-D. Yu for his careful
reading of an early draft.

2. K-partial ordering in a birational class

For a birational map f : X ��� X ′ between two Q-Gorenstein (com-
plex projective) varieties, we say thatX ≤K X ′ (resp.X <K X ′) if there
is a birational correspondence (φ, φ′) : Y → X×X ′ extending f with Y
smooth, such that φ∗KX ≤Q φ′∗KX′ (resp. <Q) as divisors. These rela-
tions are easily seen to be independent of the choice of Y . Notice that
X ≤K X ′ and X ≥K X ′ imply X =K X ′, that is φ∗KX =Q φ′∗KX′ . In
this case, we say that X and X ′ are K-equivalent.

In this K-partial ordering, divisorial contractions and flips will de-
crease its K-level while flops induce K-equivalence. It is easy to see that
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K-equivalent terminal varieties are isomorphic in codimension one. In
fact, more is true in general:

Theorem 2.1. Let f : X ��� X ′ be a birational map between two
varieties with canonical singularities. Suppose that the exceptional locus
Z ⊂ X is proper and that KX is nef along Z, then X ≤K X ′. Moreover,
If X ′ is terminal then codimXZ ≥ 2.

(This is Theorem 1.4 in [9]; a better presentation of its proof is
included in the appendix.) In particular, birational minimal models are
K-equivalent.

Conjecture 2.2. For complex projective manifolds X and X ′ with
X ≤K X ′, the canonical morphism T : Hk(X,Q)→ Hk(X ′,Q) induced
from the graph closure Γf ⊂ X×X ′ is a monomorphism which preserves
the rational Hodge structures. More generally, T induces a monomor-
phism of motives, e.g., in the sense of Galois representations or in the
sense of Chow motives.

While it is of fundamental importance to study the cycle Γf ⊂ X×X ′

directly, we instead restrict ourselves to a numerical version in this note.
Namely, we prove in §4 the main result of this note:

Theorem 2.3. Let X and X ′ be two K-equivalent complex projec-
tive manifolds. Then hp,q(X) = hp,q(X ′) for all p, q. More precisely, if
X =K X ′ is defined over a finitely generated field F over Q, then for
any prime �,

Hj
et(XF ,Q
)ss ∼= Hj

et(X
′
F
,Q
)ss

as Gal (F/F ) representations.

3. p-adic integration and étale cohomology

We start by recalling the construction in [9]. We will assume that
X and X ′ are smooth projective and K-equivalent, though the con-
struction also works for log-terminal varieties. Take an integral model
of the K-equivalence diagram over SpecS with S a finitely generated
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Z-algebra:
Y
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��

SpecS

For almost all maximal ideals P in S, in fact a Zariski open dense set in
the maximal spectrum of S, we have good reductions of X, X ′, Y , φ and
φ′. In such cases, let R = ŜP be the completion of S at P with residue
field kP := R/P ∼= Fq, q = pr for some r. For ease of notation, we use
the same symbol to denote the corresponding object over SpecR. Let
{Ui} be a Zariski open cover of X such that KX |Ui is trivial for each i
with generator Ωi a regular n-form on Ui, where n = dimX. Then for a
compact open subset A ⊂ Ui(R) ⊂ X(R), we define its p-adic measure
by

µX(A) ≡
∫

A
|Ωi|p.

This is independent of the choice of the generator Ωi. The p-adic mea-
sure of X(R) and X ′(R) are the same by the change of variable formula
and X =K X ′. By a direct extension of Weil’s formula [12], we see in
[9] that (let X be the special fiber over SpecFq)

µX(X(R)) =
|X(Fq)|
qn

.

By applying this to finite extensions of Fq, we conclude that X and X ′

have the same local zeta functions Z(X, t) = Z(X ′
, t) with

Z(X, t) := exp
( ∑

k≥1 |X(Fqk)| t
k

k

)
.

Knowing this for one P already allows us to apply Grothendieck-
Deligne’s solution to the celebrated Weil conjecture [3] to conclude that
K-equivalent manifolds have the same Betti numbers. Indeed, let

Pj(t) = det
(
1− tFrq |Hj

et(XFq
,Q
)

)

be the characteristic polynomial of the Frobenius map Frq acting on the
�-adic étale cohomologies ofX

Fq
for any fixed � = p, then Grothendieck’s
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Lefschetz trace formula implies that

Z(X, t) =
P1(t) . . . P2n−1(t)

P0(t)P2(t) . . . P2n(t)
.

Moreover, Deligne showed that Pj(t) ∈ Z[t] which is independent of the
choices of � and all roots of Pj(t) have absolute value q−j/2 (Riemann
Hypothesis). This clearly implies that X and X

′ have the same �-adic
Betti numbers, hence by comparison theorem X and X ′ have the same
ordinary Betti numbers.

4. Global �-adic representations

In this section we prove Theorem 2.3 using two technical devices
discussed in §5 and §6. The basic observation here is that in fact more
is true by putting together the information provided by all such P ’s.
Let us assume that X =K X ′ are defined over S such that the quotient
field F of S is a number field. The general case can be reduced to the
number field case by the standard trick in §6. Under this assumption
we then know that X and X ′ have good reductions and have the same
local zeta functions for all P ∈ SpecS\A with A a finite set.

Consider the following two semisimplifications of �-adic cohomolo-
gies

Hj
et(XF ,Q
)ss and Hj

et(X
′
F
,Q
)ss

as (global) �-adic representations of Gal(F/F ), denoted by ρ and ρ′. In
the language of [8], these are integral representations, meaning that the
associate local representations are unramified and have integral char-
acteristic polynomial for the Frobenius generator of Gal(kP /kP ) for all
but finitely many P . This is indeed the case by Deligne’s result since
for P with good reduction, the local �-adic representation is exactly
Hj
et(XkP

,Q
)ss with characteristic polynomial Pj(t) as before.

By the Cěbotarev density theorem ([8], Ch1, §2) that
⋃

P �∈A

Gal(kP /kP )

is dense in Gal (F/F )/(ker ρ∩ker ρ′) and the fact that rational semisim-
ple representations are characterized by their trace functions (charac-
ters), this implies that

Hj
et(XF ,Q
)ss ∼= Hj

et(X
′
F
,Q
)ss

as Gal(F/F ) representations.
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Remark 4.1. From the point of view of motive theory, the above
argument is simply the one showing that L function is equivalent to
the semisimplification of the corresponding Galois representations. Also
there is a semisimplicity conjecture stating that the cohomological �-adic
representations are always semisimple.

Now we select a prime P ∈ SpecS with char kP = �. Let K be the
completion of F at P , then by base change theorem we also get

Hj
et(XK ,Q
)ss ∼= Hj

et(X
′
K
,Q
)ss

as Gal(K/K) representations (usually highly ramified!) — here we do
not even need to require X or X ′ to have good reductions at P . By
Faltings’ Hodge-Tate decomposition theorem in the next section, this
then implies the equivalence of Q
 (and hence Q) Hodge numbers.

5. p-adic Hodge theory

In this section we recall the p-adic Hodge Theory that we are going to
apply. Following the usual convention, we will switch the prime number
� to p.

Let X a smooth projective manifold over a p-adic field K. Let G =
Gal(K/K) and Cp be the completion of K. Then there exists a natural
G-equivariant isomorphism [5], the so-called Hodge-Tate decomposition:

⊕
i

(
Cp ⊗K Hm−i(XK ,Ωi)(−i)) ∼= Cp ⊗Qp H

m
et (XK ,Qp),

where G acts on Hm−i(XK ,Ωi) trivially and on the right hand side
diagonally. Here (i) means the Tate twist by i-th power of cyclotomic
character (lim←−µpn)⊗i. Since CG

p = K and Cp(i)G = 0 for i = 0, it is
clear that

hi,m−i = dimK

(
Cp ⊗Qp H

m
et (XK ,Qp)(i)

)G
.

Now the key observation is that the semisimplification is already
enough to determine the Hodge numbers.

Proposition 5.1. In the notation as above, then

hi,m−i = dimK

(
Cp ⊗Qp H

m
et (XK ,Qp)ss(i)

)G
.
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Proof. Let Hm
et (XK ,Qp) =: V = V0 ⊃ V1 ⊃ · · · ⊃ Vk be a filtration

of G-submodules such that Vj/Vj+1’s are simple G-modules. Then by
definition V ss =

⊕
j Vj/Vj+1. Since Cp is a flat G-module and the

functor of taking G-invariants A �→ AG is left exact, simple induction
shows that

dimK(Cp ⊗ V )G ≤ dimK(Cp ⊗ V ss)G.

The same inequality applies to V (i) as well for any i ∈ Z, hence∑
i

hi,m−i =
∑

i

dimK(Cp ⊗ V (i))G

≤
∑

i

dimK(Cp ⊗ V ss(i))G ≤ dimQp V
ss,

where the last inequality is a general fact about G-modules. Now since
both ends are equal to dimQp V , all the inequalities are equalities. In
particular,

hi,m−i = dimK

(
Cp ⊗ V (i)

)G = dimK

(
Cp ⊗ V ss(i)

)G
.

q.e.d.

Remark 5.2 (Suggested by C.-L. Chai). Proposition 5.1 follows
immediately from the fact that Hodge-Tate representations form a Tan-
nakian category, in particular it is stable under extensions.

6. Deformation to the number field case

The aim of this section is to explain that given a finite number of
complex projective varieties and a finite number of morphisms between
them, denoted by X, one may always deform the system X a little bit
to make it defined over a number field F . Moreover, when the issue of
smoothness is imposed, one may find a Z-algebra S integral over Z with
F as its quotient field such that all the given objects are defined over
S and the imposed smoothness condition is preserved under reductions
over all but a finite number of primes.

As we will only apply it to the K-equivalence diagram here, we
restrict ourself to this case for simplicity. We start with a model X →
SpecS with S a finitely generated Z-algebra. Namely, (φ, φ′) : Y →
X ×X ′ → SpecS with relation (E is a relative normal crossing divisor
over SpecS)

KY/S = φ∗KX/S + E = φ′∗KX′/S + E.
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Consider a large enough number field F such that there exists an F -
valued point η : SpecF → SpecS in the regular values of X → SpecS.
Then, by considering the resulting fiber diagram over η, we get a K-
equivalence diagram Xη over F by taking base change of the above
relation to the fiber over η. By selecting an integral model of Xη again
then we are done.

Notice that these algebraic (number field) points η are dense in
SpecS and the union of Galois groups Gal(F/F ) among all η is dense
in Gal(FS/FS) for FS the quotient field of S. This allows us to deduce
that

Hj
et(XF S

,Q
)ss ∼= Hj
et(X

′
F S
,Q
)ss

as Gal(FS/FS) representations from the number field case.

Remark 6.1. For people not familiar with this procedure, the fol-
lowing example provides a trivial illustration. Let e and π be any two
algebraically independent numbers. Take say two plane conicsX andX ′

defined by 2x2+ey2+z2 = 0 and πx2+y2+z2 = 0 with birational map
(in fact an isomorphism) given by (x, y, z) �→

(√
π
2x,

1√
e
y, z

)
. This sys-

tem is defined over the ring S = Z

[
e, π, 1√

e
,
√

π
2

] ∼= Z[u, v, w, s]/(uw2−
1, v − 2s2). Take F = Q, an F -rational point of SpecS could be taken
to be η = (u, v, w, s) = (1, 2, 1, 1). Over this point η, both X and X ′

are deformed into 2x2+ y2+ z2 = 0 and the birational map is deformed
into the identity map.

7. Appendix: Proof of Theorem 2.1

Let us recall the proof briefly. Let (φ, φ′) : Y → X × X ′ be a
resolution of f so that the union of the exceptional set of φ and φ′ is a
normal crossing divisor of Y . Let KY =Q φ∗KX + E =Q φ′∗KX′ + E′.
So

φ′∗KX′ =Q φ∗KX + F, with F := E − E′.

It suffices to show that F ≥ 0. Let F =
∑n−1

j=0 Fj with dimφ′(SuppFj) =
j. We will show that Fj ≥ 0 for j = n−1, n−2, . . . , 1, 0 inductively. As
E′ is φ′-exceptional, Fn−1 ≥ 0 is clear. Suppose that we have already
shown that Fj ≥ 0 for j ≥ k + 1.

Consider the surface Sk := Hn−2−k.φ′∗Lk on Y where H is very
ample on Y and L is very ample on X ′. We get a relations of divisors
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on Sk:
φ′∗KX′ |Sk

=Q φ∗KX |Sk
+ a− b,

where Hn−2−k.φ′∗Lk.F = a− b with both a and b effective. Notice that
b can only come from Fk since

∑
j≥k+1 Fj ≥ 0 and Lk ∩ φ′(Fj) = ∅ for

j < k. Now we look at

b.φ′∗KX′ =Q b.φ∗KX + b.a− b2.

The left hand side is always zero since φ′(b) ⊂ Lk ∩ φ′(Fk) is zero
dimensional. Moreover, since φ′∗KX′ =Q φ∗KX on φ−1(X\Z), we must
have that φ(SuppF ) ⊂ Z. In particular, b.φ∗KX ≥ 0. It is also clear
that b.a ≥ 0. However, if b = 0 then it is a nontrivial combination of
φ′ exceptional curves in Sk. By the Hodge index theorem for surfaces
we then have that b2 < 0, a contradiction. So b = 0 and Fk ≥ 0. The
codimension statement is easy and we omit its proof.
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